

WHY GRAPHS?

High-luminosity scaling problem, means we need something complimenting traditional tracking algorithms, but why graphs?

WHY GRAPHS?

- High-luminosity scaling problem, means we need something complimenting traditional tracking algorithms, but why graphs?
- Graphs can capture inherent sparsity of much physics data

WHY GRAPHS?

- High-luminosity scaling problem, means we need something complimenting traditional tracking algorithms, but why graphs?
- Graphs can capture inherent sparsity of much physics data
- Graphs can capture the manifold and relational structure of much physics data
- Conversion to and from graphs can allow manipulation of dimensionality
- Graph Neural Networks are booming (i.e. wouldn't be talking about graphs if there weren't powerful new methods to handle them)
- Industry research and investment means good outlook for software and hardware optimised for graphs

WHY GRAPH NEURAL NETWORKS?

- Can approximate geometry of the physics problem
- Are a generalisation of many other machine learning techniques
- E.g. Message passing convolution generalises CNN from flat to arbitrary geometry

- Can learn node (i.e. hit / spacepoint) features and embeddings, as well as edge (i.e. relational) features and embeddings
- E.g. In practice, for a LHC-like detector environment, join hits into graph, and iterate through message-passing of hidden features

APPLICATIONS

TrackML dataset ~ HL-LHC silicon https://indico.cern.ch/event/831165/contributions/3717124/

 High Granularity Calorimeter data https://arxiv.org/abs/2003.11603

LArTPC data ~ DUNE experiment https://indico.cern.ch/event/831165/contributions/3717138/

Quantum GNN for Particle Track Reconstruction https://indico.cern.ch/event/831165/contributions/3717116/

GNNs on FPGAs for Level-1 Trigger
 https://indico.cern.ch/event/831165/contributions/3758961/

PERFORMANCE

 Accuracy metrics: Competitive with highest-ranking TrackML entries

 Timing metrics: average of 0.34 s/event to construct and classify (doublet) graph

- Distributed inference/training: scales as expected
- Scaling w/ luminosity: Less than quadratic with embedding-space construction and sparse messagepassing operations

Example classified graph – correct (grey), incorrect (red)

(b) Triplet GNN

False positive rate

OUTLOOK

 Converging on better architectures (attention, gated RNN, generalising dense, flat methods to sparse, graph structure - not that the two are mutually inclusive, there is increasing interest in sparse CNN techniques, for example)

		LINK PREDICTION COLLAB									
				TSP					COLLAB		
Model	L	#Param	Test F1 \pm s.d.	Train F1 \pm s.d.	#Epoch	Epoch/Total		Test Hits \pm s.d.	Train Hits±s.d.	#Epoch	Epoch/Total
MLP	4	96956	0.544 ± 0.001	0.544 ± 0.001	164.25	50.15s/2.31hr	39441	20.350±2.168	29.807±3.360	147.50	2.09s/0.09hr
GCN GraphSage	4	95702 99263	$0.630\pm0.001 \\ 0.665\pm0.003$	0.631 ± 0.001 0.669 ± 0.003	261.00 266.00	152.89s/11.15hr 157.26s/11.68hr	40479 39856	50.422±1.131 51.618±0.690	92.112±0.991 99.949±0.052	122.50 152.75	351.05s/12.04hr 277.93s/11.87hr
MaNat	A	00007	0.641±0.002	N 642±N NN2	263 00	01 15015 55hr	20751	26 144±2 101	61 156±2 072	167.50	26 60all 26he
GatedGCN-E GatedGCN-E	4 16	97858 500770	0.808±0.003 0.838±0.002	0.811±0.003 0.850±0.001	197.00 53.00	218.51s/12.04hr 807.23s/12.17hr	40965	49.212±1.560	88.747±1.058	95.00	451.21s/12.03hr

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." arXiv preprint arXiv:2003.00982 (2020).

OUTLOOK

Google Trends of "Graph Neural Networks"

- Converging on better architectures (attention, gated RNN, generalising dense, flat methods to sparse, graph structure - not that the two are mutually inclusive, there is increasing interest in sparse CNN techniques, for example)
- Converging on better methods (sparse operations, triplet graph structure, fast clustering, approximate NN, piggy-backing off big tech methods, e.g. Facebook FAISS)

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." arXiv preprint arXiv:2003.00982 (2020).

OUTLOOK

Google Trends of "Graph Neural Networks"

Converging on better hardware (mixed precision handling on new GPUs/TPUs, sparse handling in IPUs, compilability of graph-structure ML libraries for FPGA ports, e.g. IEEE HPEC GraphChallenge)

- Converging on better architectures (attention, gated RNN, generalising dense, flat methods to sparse, graph structure - not that the two are mutually inclusive, there is increasing interest in sparse CNN techniques, for example)
- Converging on better methods (sparse operations, triplet graph structure, fast clustering, approximate NN, piggy-backing off big tech methods, e.g. Facebook FAISS)

Model		LINK PREDICTION										
	L	#Param	Test F1±s.d.	TSP Train F1±s.d.	#Epoch	Epoch/Total	#Param (L = 3)	Test Hits±s.d.	COLLAB Train Hits±s.d.	#Epoch	Epoch/Total	
MLP	4	96956	0.544±0.001	0.544±0.001	164.25	50.15s/2.31hr	39441	20.350±2.168	29.807±3.360	147.50	2.09s/0.09hr	
GCN GraphSage	4 4	95702 99263	0.630±0.001 0.665±0.003	0.631±0.001 0.669±0.003	261.00 266.00	152.89s/11.15hr 157.26s/11.68hr	40479 39856	50.422±1.131 51.618±0.690	92.112±0.991 99.949±0.052	122.50 152.75	351.05s/12.04hr 277.93s/11.87hr	
MaNat	<i>A</i> 1	00007	0.641±0.002	0.642±0.002	263 00	01 16016 65hr	1 20751	26 144±2 101	61 156±2 072	167 50	26 60a/1 26hr	
							•					
GatedGCN-E GatedGCN-E	4 16	97858 500770	0.808±0.003 0.838 ± 0.002	0.811±0.003 0.850±0.001	197.00 53.00	218.51s/12.04hr 807.23s/12.17hr	40965	49.212±1.560	88.747±1.058	95.00	451.21s/12.03h	

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." arXiv preprint arXiv:2003.00982 (2020).